
 
Confronting weather and climate models with observational data from soil 

moisture networks over the United States 
Paul A. Dirmeyer1, Jiexia Wu1, Holly E. Norton1, Wouter A. Dorigo2,3,  

Steven M. Quiring4, Trenton W. Ford5, Joseph A. Santanello Jr.6,  
Michael G. Bosilovich6, Michael B. Ek7, Randal D. Koster6,  

Gianpaolo Balsamo8, and David M. Lawrence9 
 
 

1George Mason University, Fairfax, VA, USA 
2Vienna University of Technology, Vienna, Austria 

3Laboratory of Forest and Water Management, Ghent University, Ghent, Belgium 
4Texas A&M University, College Station, TX, USA 

5Southern Illinois University, Carbondale, IL, USA 
6NASA Goddard Space Flight Center, Greenbelt, MD, USA 

7NOAA National Centers for Environmental Prediction, College Park, MD, USA 
8European Centre for Medium-range Weather Forecasts, Shinfield Park, Reading, UK 

9National Center for Atmospheric Research, Boulder, CO, USA 
 
 
 
 
 
 
Corresponding Author: 
Paul A. Dirmeyer 
Center for Ocean-Land-Atmosphere Studies 
George Mason University 
4400 University Drive, Mail Stop: 6C5 
Fairfax, Virginia 22030 USA 
pdirmeye@gmu.edu 
 
 
 

Revised: 13 January 2016 
Submitted to: Journal of Hydrometeorology

Manuscript (non-LaTeX) Click here to download Manuscript (non-LaTeX)
Paper1_Confronting_combined_rev3_modified.docx

https://ntrs.nasa.gov/search.jsp?R=20170003079 2020-05-09T23:39:38+00:00Z



Abstract 1 

Four land surface models in uncoupled and coupled configurations are compared to 2 

observations of daily soil moisture from 19 networks in the conterminous United 3 

States to determine the viability of such comparisons and explore the characteristics 4 

of model and observational data. First, observations are analyzed for error 5 

characteristics and representation of spatial and temporal variability. Some 6 

networks have multiple stations within an area comparable to model grid boxes; for 7 

those we find that aggregation of stations before calculation of statistics has little 8 

effect on estimates of variance, but soil moisture memory is sensitive to aggregation. 9 

Statistics for some networks stand out as unlike those of their neighbors, likely due 10 

to differences in instrumentation, calibration and maintenance. Buried sensors 11 

appear to have less random error than near-field remote sensing techniques, and 12 

heat dissipation sensors show less temporal variability than other types.  13 

Model soil moistures are evaluated using three metrics: standard deviation in time, 14 

temporal correlation (memory) and spatial correlation (length scale). Models do 15 

relatively well in capturing large-scale variability of metrics across climate regimes, 16 

but poorly reproduce observed patterns at scales of hundreds of kilometers and 17 

smaller. Uncoupled land models do no better than coupled model configurations, 18 

nor do reanalyses outperform free-running models. Spatial decorrelation scales are 19 

found to be difficult to diagnose. Using data for model validation, calibration or data 20 

assimilation from multiple soil moisture networks with different types of sensors 21 

and measurement techniques requires great caution. Data from models and 22 

observations should be put on the same spatial and temporal scales before 23 

comparison.  24 

25 
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1. Introduction 26 

Coupled land-atmosphere model development has lagged behind coupled ocean-27 

atmosphere model development for a variety of reasons. Top among them is that the 28 

necessary measurements for assessing land-atmosphere feedback processes have 29 

been largely lacking. In recent years, co-located measurements of surface fluxes, 30 

near surface meteorology and land surface states like soil moisture have begun to 31 

cross a critical threshold of quantity and coverage, largely due to the maturation of 32 

the global FluxNET set of environmental measurements (Baldocchi et al. 2001). 33 

Systematic benchmarking of land surface models (LSMs) has begun based on 34 

simulation of daily mean surface fluxes (Best et al. 2015). However, for soil moisture 35 

alone there are even more widespread data in the form of many independent 36 

networks of in situ measurements (Dorigo et al. 2011, Quiring et al. (under review)). 37 

They span a tremendous range of station densities, down to sub-grid scales relative 38 

to current weather and climate models, making them enticing for model calibration 39 

and validation.  40 

Bringing observational data to bear on model improvement requires not just the 41 

data sets and models themselves, but also sound methods of analysis and processes 42 

understanding to guide the approach. Comparing models with observations can 43 

easily become misguided, if not actually unfair, if the basic differences between how 44 

models represent the world and how instruments measure the world are not 45 

carefully considered and accounted for. For a quantity like soil moisture, this is a 46 

particularly significant issue (Dirmeyer 2004, Koster et al. 2009). Xia et al. (2015) 47 

spatially averaged both model and observed data to coarse scales to facilitate 48 

comparison. Stillman et al. (2014) assessed the ability of multiple soil moisture 49 

instruments in a catchment to represent area-averaged soil moisture, using a higher 50 
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density raingauge network to infer smaller scale variations. Gruber et al. (2013) 51 

examined random errors in soil moisture at spatial scales comparable to global 52 

models using a triple colocation method combining remotely sensed and modeled 53 

soil moisture estimates with in situ soil moisture measurements, highlighting the 54 

care that must be taken in applying in situ measurements as ground truth. Such 55 

approaches hold promise to evaluate remote sensing products (Dorigo et al. 2015) 56 

and improve estimates of soil moisture–atmosphere interactions (Crow et al. 2015).  57 

In this study we confront 12 unique model configurations using four different land 58 

surface models with soil moisture measurements from 19 networks across the 59 

conterminous United States. However, we first address the observational data sets 60 

themselves to estimate their error characteristics in a distinctive way based on 61 

lagged autocorrelation statistics, and their representativeness of temporal 62 

variability, spatial and temporal scales.  63 

Section 2 describes the observational and model data used. The metrics evaluated 64 

are introduced in Section 3, and Section 4 presents an evaluation of observational 65 

error. Scaling issues are addressed in Section 5. Section 6 gives an evaluation of soil 66 

moisture variance and memory in observations and models. Spatial scales of soil 67 

moisture variability are considered in Section 7, and conclusions and summary are 68 

offered in Section 8. 69 

 70 

2. Data 71 

In this comparison, point observations and model grid-box estimates of soil 72 

moisture data at daily time intervals or daily time means are used. The domain of 73 

observations for this study is confined to the conterminous United States, and model 74 
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comparisons are performed over roughly the same area. Table 1 lists all networks 75 

used, the data collections (described below) from which data were taken, the 76 

location of the networks (many are regional) and the type of instrumentation each 77 

uses.  78 

2.1 International Soil Moisture Network 79 

The International Soil Moisture Network (ISMN) is a data synthesis effort focused on 80 

collecting in situ soil moisture measurements and associated co-located 81 

observations of relevant meteorological data from all available international sources 82 

(Dorigo et al. 2011; 2013). The resulting quality-controlled database of raw 83 

observations is meant to provide ground-truth calibration and validation for 84 

satellite observations as well as for the calibration and validation of land surface 85 

models. It is coordinated by the Global Energy and Water Exchanges Project 86 

(GEWEX) in cooperation with the Group of Earth Observation (GEO) and the 87 

Committee on Earth Observation Satellites (CEOS).  88 

Data from many different networks and extended field campaigns are archived by 89 

ISMN. Those networks used in this experiment are listed in Table 2. ISMN archives 90 

data at the highest available temporal resolution up to hourly from each reporting 91 

instrument, allotting one file for each instrument and level. Basic quality control is 92 

performed and records suspected to be out-of-range or otherwise untrustworthy 93 

are flagged, but no data is omitted. Fig 1a shows the locations of stations used from 94 

ISMN. 95 

2.2 North American Soil Moisture Database 96 

The North American Soil Moisture Database (NASMD; Quiring et al. (2015)) is a 97 

collection of harmonized daily soil moisture data from in situ measurements across 98 
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North America. Networks used in this study from NASMD are listed in Table 3. The 99 

motivation for NASMD is to provide a data set to investigate processes by which soil 100 

moisture variability influences climate on seasonal to interannual timescales over 101 

North America. Unlike ISMN, NASMD provides processed data from each station 102 

location in each network. Daily values are calculated from stations with sub-daily 103 

data using a simple average. Interpolation is used to fill gaps of less than 10 days 104 

using a monthly average replacement method, which has been shown to work well 105 

with daily observations (Ford and Quiring 2014).  106 

Only one time series is provided at each station and sensor depth, regardless of how 107 

many instruments are in place. When stations have multiple instruments at a single 108 

depth, usually the first reported sensor is used. However, if data from the first 109 

instrument are flagged by the quality control routine or if there are excessive 110 

missing observations, the next reported instrument is considered and may be used 111 

instead. Because of micro-scale variability in soil texture, averaging observations 112 

from multiple sensors was considered unjustifiable. Fig 1b shows the distribution of 113 

stations in the NASMD repository. 114 

2.3 Observational Data Processing 115 

The data from both collections were further processed for this study. Each data file 116 

is scanned for basic statistics including the time range of available data, depths of 117 

instrument readings, and data reporting intervals so the data from each network 118 

can be synthesized into a single file spanning the maximum time range of the 119 

network’s observations. For the ISMN data, daily means are first calculated.  120 

For each station and profile of sensors in the soil (or across the reporting depth for 121 

remote sensors like in COSMOS or PBO-H2O), the observational data are vertically 122 

interpolated to the model levels for each of the four land surface schemes in this 123 
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study, following the procedure used in the second Global Soil Wetness Project 124 

(Dirmeyer et al. 2006). The lowest model layer to encompass the depth of the 125 

deepest reporting sensor is the lowest model layer to contain interpolated data – 126 

layers below are set to missing. Model layers above the shallowest sensor depth are 127 

set to the soil moisture value of that shallowest sensor. Otherwise, it is assumed that 128 

the observed data of buried sensors are representative of a layer whose top is 129 

exactly halfway between it and the next shallowest sensor (or the surface if it is the 130 

shallowest sensor), and whose bottom is exactly halfway between it and the next 131 

deepest sensor (or if it is the deepest sensor, to the same distance below as the top 132 

boundary was determined to be above it). It is assumed that the soil moisture across 133 

this thickness is uniform, as is typically supposed for land surface model layers. 134 

Then the interpolated value for any model layer is a simple weighted average of all 135 

observation “layers” that overlap the model layer, preserving water content. This 136 

process has the advantage that the final observed time series is on each land surface 137 

model’s vertical coordinate, facilitating comparison.  138 

Where there are multiple instruments at the same station in a network in ISMN, the 139 

data are sorted based on the number of days without missing data so that the most 140 

complete time series can be accessed easily. Data are gathered by network so that 141 

analyses and comparisons can be performed on a network-by-network basis. 142 

An initial concern was whether the differences in the processing of data from the 143 

same network taken from each data collection would affect the results, particularly 144 

the fact that some gap-filling had been applied to the NASMD time series, but not to 145 

ISMN. Furthermore, it is evident from a comparison of Tables 2 and 3 that the 146 

number of stations and period of data collected is not the same between the two 147 

collections for the same network. Comparison of network statistics, some of which 148 
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are shown in Section 4, suggest there is no significant difference between the two 149 

versions of data for the same networks. Finally, due to varying data availability, for 150 

each calculation a fixed period was identified subjectively for each network where 151 

most stations have data. Within that period, a station is removed if more than half 152 

the period is outside the range of data for that station.  153 

2.4 Models 154 

Four LSMs are confronted with the observational data from ISMN and NASMD: the 155 

Catchment model from the National Aeronautics and Space Administration (NASA) 156 

Goddard Space Flight Center (GSFC; Koster et al. 2000, Ducharne et al. 2000), the 157 

Noah model version 2.7 from the National Oceanic and Atmospheric Administration 158 

(NOAA; Ek et al. 2003), the Hydrology-Tiled European Centre for Medium-range 159 

Weather Forecasts (ECMWF) Surface Scheme for Exchange over Land (HTESSEL; 160 

Balsamo et al. 2009), and the Community Land Model version 4.0 that is sponsored 161 

by NSF and DOE (CLM4; Lawrence et al. 2011). Catchment parameterizes an 162 

idealized hillslope in each grid box to estimate from bulk water prognostic variables 163 

the fractional areas of saturated, unstressed and dry surfaces with respect to 164 

evapotranspiration; it then calculates soil moisture profiles as a diagnostic. The 165 

other three LSMs calculate soil moisture in each layer as a balance between 166 

gravitational drainage and down-gradient conduction in the vertical only. All models 167 

treat infiltration of precipitation as a water input at the top, direct evaporation from 168 

the top soil layer as an output to the atmosphere, transpiration drawing water out of 169 

all soil layers containing roots, and baseflow drainage removing water from the 170 

bottom of the soil column. CLM includes deep interaction with a water table 171 

parameterization below the soil column. Each model uses its own distributed global 172 

map of soil properties on the model grid to determine saturated hydraulic 173 
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conductivity, porosity, and other necessary hydraulic parameters. None of the 174 

models as used here consider vertical variations in basic soil properties. 175 

Multiple sets of soil moisture data from each of four modeling centers above have 176 

been collected and compared. For contributions from a given modeling center, the 177 

LSM used is nearly or exactly the same, but the way time series of soil moisture have 178 

been produced varies. The contributions from each modeling center include an 179 

offline simulation with the LSM driven by gridded global observationally-based 180 

meteorological analyses, and a simulation or set of simulations with the LSM 181 

coupled to its corresponding global atmospheric model in a free-running 182 

(unconstrained or forecast) mode. In the case of Noah and CLM, an ocean general 183 

circulation model was also coupled to the atmospheric model but that has little 184 

consequence for this study, and for CLM predicted vegetation phenology was 185 

enabled. For all but CLM, there is also a reanalysis where the atmosphere and the 186 

land surface states, to varying extents, are constrained by data assimilation. Noah is 187 

the LSM in two reanalyses investigated here. Table 4 outlines the various 188 

configurations and the spatial resolutions of these models. When compared to 189 

observed data, the model grid box containing the site of observed station is used.  190 

 191 

3. Metrics  192 

The model simulations described in Section 2.4 are confronted with three metrics 193 

from the observed soil moisture networks’ data. Additionally, the observations 194 

themselves are evaluated to assess their likely measurement error based on the 195 

methodology of Vinnikov et al. (1996), as described in the next section. 196 
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The first metric assessed is the variance or standard deviation of daily soil moisture 197 

for each month, grouped by season (DJF, MAM, JJA and SON). No attempt is made to 198 

remove a climatological annual cycle, as the in situ networks have, by and large, not 199 

been in place long enough to calculate stable climatological mean annual cycles for 200 

most stations. As we are concerned with linkages between land and atmosphere at 201 

sub-seasonal time scales, the mean of each month is removed from all data in that 202 

month so that no interannual variability enters the calculation, but some seasonal 203 

trends within months may still be present that may affect statistics.  204 

Second, the soil moisture memory is assessed for each station and vertical level in 205 

the soil by computing lagged autocorrelations of the daily time series. Lagged 206 

autocorrelations indicate soil moisture behaves as a first-order Markov process 207 

(Schlosser and Milly 2002). As a result, we can estimate time scales of correlation, 208 

i.e., memory, as the time it takes the lagged autocorrelation of soil moisture to drop 209 

to 1/e. We have found that linear extrapolation between the values of ln(r) where r 210 

is autocorrelation at lags of 1 and 2 days to the lag where ln(r)=−1 provides an 211 

estimate that is not significantly different from using a linear fit through ln(r) at a 212 

larger number of lags (cfr. Robock et al. 1995). This is also calculated on a seasonal 213 

basis as there is a pronounced annual cycle of memory time scales in most locations. 214 

These are then compared to model grid boxes at the same locations. Third, we 215 

perform a similar calculation between time series from pairs of stations, and 216 

between their corresponding model grid boxes, to assess spatial correlation and 217 

length scales.  218 

Finally, we are concerned about the representativeness of point soil moisture 219 

measurements for model grid box averages. There are inherent problems with 220 

direct comparison between point observations and LSM grid box output (cf. Gruber 221 
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et al. 2013, Dirmeyer et al. 2013). The densities of some of the in situ networks are 222 

high enough to allow us to assess the sensitivity of an area-average soil wetness at 223 

model grid scales to the number of measurements contributing to the average. Thus 224 

we attempt to address the issue of scale mismatch and account for it when 225 

comparing models and observations. We address the scaling issue in Section 5 226 

before showing model performance on the metrics listed above. 227 

 228 

4. Observational Error 229 

Vinnikov and Yeserkepova (1991), following the proposition of Delworth and 230 

Manabe (1988), showed that soil moisture time series behave like first-order 231 

Markov processes such that the autocorrelation of soil moisture at a location at lag 232 

decreases as lag grows:  233 

    (1) 234 

where  is the decay frequency, or  is the time scale. Robock et al. (1995) 235 

showed that for actual observed data, a linear best fit of ln(r) versus  for a range of 236 

lags does not cross at a value of r=1 (i.e., ), but rather at some correlation 237 

. The displacement of the correlation at� ; a (i.e., ), is an 238 

indicator of measurement error.  239 

Vinnikov et al. (1996) noted that the variance in any time series of observed 240 

measurements is composed of the sum of the actual variance of the measured 241 

quantity and the noise contributed from random observational error. The ratio of 242 

error variance  to real variance  is related to the displacement of the 243 

extrapolated autocorrelation: 244 
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    (2) 245 

This relative error can also be derived from a different perspective using triple 246 

colocation (Gruber et al. 2016). Given a sufficient number of measurements, 247 

observational error from a station or network of stations can be estimated without 248 

specific validation or comparison to independent data. This is a very powerful result 249 

that can provide a measure of uncertainty for data that have red noise spectra, such 250 

as soil moisture.  251 

We have applied this approach to estimate the error in the networks represented in 252 

the ISMN and NASMD data sets. Figure 2 shows the relative random error as the 253 

square root of the ratio in Eq. 2 estimated across all stations in each network for the 254 

two databases. The data from all networks is interpolated to the four Noah model 255 

layers: 0-10cm, 10-40cm, 40-100cm and 100-200cm. Recall that for the same 256 

networks ISMN and NASMD do not always contain the same stations or span of 257 

years. As a result, the estimated observational errors for the same networks in the 258 

two databases do not match exactly – the differences may be taken as 259 

representative of the uncertainties in applying this method. 260 

Certain features are apparent nevertheless. As found by Gruber et al. (2013) 261 

observational errors are generally largest in the surface layer and decrease with 262 

depth. There is also a distinct difference between networks, and in fact between 263 

types of instrumentation. The GPS reflection method of the PBO-H2O network 264 

appears to result in a large relative random error of measurement of 0.35 for 265 

surface soil moisture. Relative random error in the cosmic ray neutron method of 266 

the COSMOS network is nearly as large at 0.32. Some of this may not be truly 267 

random error but rather due to the fact that the effective measurement depth varies 268 
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with soil moisture content, so the static station measurement depths used here 269 

introduce additional error.  270 

Dielectric probes are inexpensive and thus the most widely used. They have a 271 

relative random error of about 0.18 for near surface measurements, dropping to 272 

0.12 below 1m depth. Heat dissipation instruments appear to be the most accurate, 273 

with a surface relative random error of 0.15 dropping to around 0.07 at depth. 274 

There is a great deal of variation among networks using the same class of 275 

instrumentation. For the CHILI network, which places dielectric instruments only at 276 

1m depth, random error appears exceptionally large. The SOILSCAPE network also 277 

appears to have unusually large random errors. 278 

A further aspect of this approach to error estimation is that we can define 279 

representative profiles of a for classes of instruments, networks or stations, 280 

allowing us to estimate a “corrected” soil moisture memory for comparison to 281 

models, which by their nature do not suffer from random error in their reported 282 

state variables.  This can be accomplished by shifting the linear best fit of ln(r) by a 283 

so as to intersect 0 at ; the corrected estimate of memory from observations is 284 

then the lag at which the adjusted .  285 

 286 

5. Spatial consistency between models and observations 287 

The high-density SoilScape network contains several sets of instruments or “nodes” 288 

clustered in groups within areas of <1 km2 in several locations. At these locations it 289 

may be assumed that the stations are so close together that their separations are 290 

well within the meteorological spatial scale over which precipitation time series 291 

decorrelate. Variations in soil moisture time series from node to node should be due 292 
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to variations in the hydrologic properties of the sites of each node, and random 293 

measurement error.  294 

There are also parts of the US where SCAN and SNOTEL have multiple stations 295 

separated by distances larger than SoilSCAPE, but within a typical global climate 296 

model grid box O(100km). Variations on these scales may begin to be determined by 297 

differences in the meteorological time series at each station that are not represented 298 

explicitly by global models because they are at the sub-grid scale. Thus, data from 299 

these sites may allow us to see how this bridging of scales affects the 300 

representativeness of climate model soil moisture time series, and shed light on 301 

how to compare models to observations across scales. 302 

First we consider how averaging together the time series of multiple proximate 303 

stations affects the statistics of the time series. The assumption is that a model grid 304 

box time series is more representative of the average of multiple stations within 305 

that grid box than single stations. If statistics are found to converge as more stations 306 

are added to the average, and a general scaling factor is found to apply, we may have 307 

a means to translate single-station statistics to model grid box statistics and vice 308 

versa. If the statistics do not appear to be sensitive to the number of stations 309 

included in the average, then scaling may not be necessary to compare point 310 

measurements to model grid box values. 311 

We examine data from four of the SoilSCAPE sites that include the most nodes and 312 

longest time series. These are located near Canton, Oklahoma (nodes numbered in 313 

the 100s), Tonzi Ranch, California (400s), and New Hogan Lake, California (500s and 314 

700s). Across all sites the maximum separation of any two nodes is 503m, and the 315 

median separation ranges from 166m to 214m. Data span three years from 2011 to 316 

2014. We include 19 nodes from the 400s site, 18 from the 500s, 21 from the 100s 317 
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and 13 from the 700s. Also examined are data from a cluster of 12 SCAN sites in and 318 

around northern Alabama that span 2002-2014 and range in separation from 6-319 

118km with a median separation of 52km. 320 

Calculations were performed using data vertically interpolated to the Noah model 321 

levels – results shown here are confined to the top 10cm layer results, but lower 322 

level results are consistent with these. Also we examined data for the entire year, 323 

and separately by season. We find the mean and standard deviation in time for time 324 

series from each node at a site, then for each combination of two nodes averaged 325 

together only for days when each has no missing data, then for combinations of 326 

three, four, etc., up to the series where all nodes at a site are averaged together. We 327 

also calculate the variance among each statistic calculated with the same number of 328 

nodes in the combination. Because of missing data for different dates at various 329 

nodes, the total amount of data in the calculations dwindles as we go to larger and 330 

larger combinations. Fig 3a shows how data completeness drops from nodes 331 

considered one at a time through larger and larger combinations. We also 332 

constructed an abbreviated complete time series by taking a subset of the soil 333 

moisture data from SCAN stations in and around northern Alabama – ten stations 334 

that have complete data from 22 March 2007 through 21 January 2008. This is used 335 

to compare the impact of missing data on statistics. 336 

Fig 3b shows how the average standard deviation in time for daily surface soil 337 

moisture from all seasons changes as more nodes are averaged together. Aside from 338 

a small uptick when going from single stations to combinations of two, there is little 339 

systematic change and the curves are remarkably flat. The complete data suggest a 340 

slight drop in the average standard deviation of ~10% from nodes considered 341 

individually to all considered together. Station data during summer only is more apt 342 
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to show a slight rise in standard deviations with more combined nodes, whereas it is 343 

flatter in spring and fall (not shown). Overall, it would seem that the variability of 344 

daily soil moisture time series is not very sensitive to spatial scaling and aggregation 345 

over O(100m) to O(<100km), and it appears model gridbox soil moisture can be 346 

reasonably validated against single-site data for this metric. 347 

This is heartening, since there is certainly sensitivity of the time mean to 348 

aggregation of nodes. Fig 3c shows the coefficient of variation (COV) of mean soil 349 

moisture across the various numbers of combinations of nodes. There is a general 350 

drop in COV as more nodes are included in the averaging. The flattening of the slope 351 

of the curve around the middle values of combined nodes followed by an inflection 352 

and steepening of the curves again as nearly all nodes are included appears not to be 353 

solely an artifact of the drop in data completeness, although it appears to be less 354 

pronounced in the complete data subset.  355 

Soil moisture memory as defined in Section 3 is also examined. Missing data affect 356 

the estimation of memory as lagged autocorrelations can only be estimated when 357 

data are not missing on consecutive days (or two days apart for lag-2 estimates). As 358 

we average more stations together, there are more days when at least one station is 359 

missing data and the sample size decreases more steeply than for mean or variance.  360 

Figure 4 shows estimates of top 10cm soil moisture memory as a function of the 361 

number of stations combined for four SoilScape locations, SCAN stations over 362 

northern Alabama and the complete subset of those same SCAN stations. There are 363 

two curves for each set of stations. The solid curves show the median value of soil 364 

moisture memory calculated separately across all combinations of stations taken N 365 

at a time, N indicated on the abscissa. The dotted line is the memory calculated from 366 

the average 1-day and 2-day lagged autocorrelations across all combinations.  367 
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There is a clear separation between the three California sites and those east of the 368 

Rockies. The California sites have the longer memories, which is logical as California 369 

has a prolonged dry season when soil moisture anomalies may persist for months 370 

relative to the climatological annual cycle (though we caution that some of the 371 

memory may reflect sub-monthly facets of the climatological seasonal cycle, which 372 

were not removed by the aforementioned subtraction of monthly means from the 373 

data). They also show discrepancies between the two approaches to estimating 374 

memory for small numbers of combined stations. The estimates converge in all 375 

cases for greater numbers of combined stations. The Oklahoma and Alabama sites 376 

have shorter memories, consistent with their year-round likelihood for precipitation 377 

and general lack of a dry season. They also show very high agreement between the 378 

median memory and the memory calculated from the mean lagged autocorrelations. 379 

In all cases the memory calculated from the mean lagged autocorrelations increases 380 

as more stations are averaged together – by 14% for the SCAN Alabama sites to 381 

nearly 200% for the SoilScape 700 nodes. Behavior of the medians is less consistent, 382 

as values go up or down as the number of combined stations increases.  383 

Across this limited number of sites there is not an obvious relationship between 384 

characteristics of the station data (e.g., completeness shown in Fig 3a) and the type 385 

or degree of change from single stations to inclusion of all stations. It would not be 386 

advisable based on these results to propose a method to scale memory calculated 387 

from individual stations to grid-box averages. It may be more judicious to compare a 388 

number of stations averaged over a certain area to model output averaged over the 389 

same area, although as shown later there are suspicious systematic differences 390 

between observational networks as well.  391 

 392 
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6. Variance and Memory 393 

In this section we begin comparing model estimates of soil moisture statistics across 394 

the conterminous US with statistics from co-located in situ measurements. For each 395 

model configuration, stations are compared to the model grid box that contains 396 

them. Table 5 shows the correlations calculated for each of the 19 networks listed in 397 

Table 1 between model and observed intra-seasonal (calculated monthly and 398 

averaged for seasons) standard deviations of daily soil moisture. Correlations are 399 

then averaged across the networks, weighted by the number of stations in each 400 

network that went into the calculation. Because of the varying numbers of stations 401 

and areal extents of the different networks, it is not feasible to assign statistical 402 

significance to the averaged correlations. Networks are separated into local and 403 

regional extents because we have noticed a rather systematic separation in the 404 

correlations: uniformly the models verify poorly with the local (mostly state-level) 405 

networks in terms of the spatial pattern of soil moisture variability, but verify 406 

relatively well with the regional and national networks. This suggests that patterns 407 

of variability driven by the varying climate regimes across the US are somewhat well 408 

reflected by the models, but smaller scale variations over a few hundred kilometers 409 

or less are not captured. These smaller scale patterns are likely more determined by 410 

variations in soils and landscape that are poorly represented by LSMs at grid-box 411 

scales. 412 

Other patterns are evident in Table 5. Correlations between models and 413 

observations are generally highest for the shallow layer below the surface layer, 414 

which ranges in thickness from ~2cm (Catchment and CLM) to 10cm (Noah). There 415 

is no indication that the model output where near-surface meteorology is dictated 416 

by observations (offline and reanalysis) is better than free-running models. This is 417 
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somewhat surprising, as there are acknowledged problems with global model 418 

simulations of precipitation, and precipitation quality is the major control on soil 419 

moisture variations (Guo et al. 2006; Wei et al. 2008). The implementation of 420 

HTESSEL in ERA-Interim used a single loamy soil texture globally, which may mute 421 

discrepancies due to soil property disagreement with observational sites and 422 

greater resemblance to forcing (precipitation) patterns thus increasing correlation. 423 

Lastly, the various configurations of the Catchment LSM represent this particular 424 

metric of soil moisture variability more poorly than any of their counterparts. We 425 

should note, however, that soil moisture products from the Catchment LSM have 426 

been tested extensively against in situ measurements in other studies (Liu et al. 427 

2011, de Lannoy et al. 2014) and, in terms of capturing the time variability of soil 428 

moisture variation at a wide variety of sites, the model performs better (average 429 

time correlations of about 0.5) than suggested by the present metric, which focuses 430 

instead on the spatial correlation against observations of the temporal standard 431 

deviation. 432 

Figure 5 displays the network means and model biases in the daily standard 433 

deviation of JJA surface volumetric soil moisture (top 3 layers for CLM) for each 434 

model configuration and network in a color-coded tabular form. There are clear 435 

systematic biases in the representation of soil moisture variability among the 436 

models. Offline versions of both HTESSEL (ERA-I land) and CLM exhibit excessive 437 

variance of soil moisture. For the Noah LSM the offline version (GLDAS) also has the 438 

highest variance, but still has a low overall bias across all networks. The reanalyses 439 

tend to exhibit the lowest variability, although CFSR is essentially undistinguishable 440 

from the offline or free-running (CFS) simulations. Among the four model groups, 441 
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CLM has the strongest positive biases and Catchment (MERRA and GEOS5) has the 442 

strongest negative biases. 443 

The vagaries of validation with multiple observational networks are also evident 444 

when one compares the different rows of Fig 5. Models exhibit the strongest positive 445 

biases for the two networks that employ heat-dissipation sensors: ARM and OK-446 

Meso, suggesting these sensors may behave differently than other types of 447 

measurements. All models show negative biases for the Missouri network, and most 448 

also show negative biases for the West Texas network. Meanwhile, biases are 449 

generally positive for DEOS; WTX-Meso and DEOS employ the same model of 450 

dielectric soil moisture probe at the same depth for surface soil moisture (5cm), so 451 

the systematic differences are more likely due to disparities between the gridded 452 

soil parameter data sets commonly used by models and actual local conditions. 453 

Soil moisture memory is calculated as described in Section 3. The extrapolation 454 

procedure from data during a season can result in e-folding time scales for lagged 455 

auto-correlations that vary over two or more orders of magnitude in some cases. 456 

Accuracy of long-memory estimates is particularly tenuous, so all averaging is done 457 

in terms of frequency rather than time, and the inverse of the result is taken to give 458 

a memory time scale in days (i.e., the harmonic mean is used).  459 

Table 6 shows how well the spatial patterns of soil moisture memory agree between 460 

models and observations. As in Table 5, the network results are grouped by extent: 461 

local versus regional/national. As with soil moisture variance, models represent 462 

large-scale patterns of memory better than intrastate variations. However, 463 

correlations are generally lower for memory than for the standard deviation of soil 464 

moisture. The highest skill is exhibited for surface soil moisture memory among the 465 

local networks, and for shallow (approx. 10-50cm depth) soil moisture memory at 466 
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larger scales. Free-running land-atmosphere models perform worst at simulating 467 

large-scale patterns of soil moisture memory – this could be due to errors in the 468 

temporal spectrum of precipitation in models (cf. Wei et al. 2010; Dirmeyer 2013). 469 

Interestingly, free-running models do the best at representing local network 470 

variations, but although the correlations are generally statistically significant due to 471 

the large number of stations included, they do not suggest practical usefulness. 472 

Various configurations with the Noah LSM show the best pattern correlations. 473 

Figure 6 presents network-by-network comparisons of JJA surface soil moisture 474 

memory biases in the same manner as Fig 5. The mean memory for different 475 

networks varies from less than 4 days to more than 17, but there is considerable 476 

variation within each network. Model biases can be substantial. Model 477 

configurations using the Catchment land surface scheme predominantly exhibit 478 

strong positive biases, suggesting that model is overly persistent in soil moisture 479 

anomalies, despite the fact it has the thinnest surface layer of the four LSMs. As 480 

noted in Sec 2.4, Catchment has a distinctly non-traditional structure; its 481 

implementation of an explicit treatment of subgrid soil moisture variability is 482 

known to tie together strongly its diagnosed surface and subsurface soil moisture 483 

variables (Kumar et al. 2009), which can in fact produce artificially high values of 484 

memory in surface and shallow layers. On the other hand, CLM (for which the top 3 485 

layers have been combined to represent the surface) largely underestimates soil 486 

moisture memory. Noah largely underestimates memory as well, except in the 20th 487 

Century Reanalysis where the spatial resolution is considerably coarser than the 488 

other implementations, and the large ensemble approach to production (Compo et 489 

al. 2011) may have a bearing on hydrologic variables. Another model that shows 490 

inconsistent behavior among implementations is HTESSEL – the offline ERA-Interim 491 
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Land simulation has consistently negative biases in soil moisture, mirrored also in 492 

ECMWF atmospheric coupled integration with data assimilation (Albergel et al. 493 

2012, 2013), while coupled IFS simulations from Athena project (Kinter et al. 2013) 494 

and ERA-Interim exhibit a slightly positive bias, highlighting the impact of both 495 

modeling and assimilation system changes in determining biases.  496 

Finally, error profiles from network to network are fairly consistent, suggesting 497 

again that discrepancies exist between gridded datasets of land surface parameters 498 

used by the models and conditions at the station sites. An exception is SNOTEL, in 499 

which stations are largely positioned in high mountain locations across the western 500 

US that may tend towards thinner and rockier soils than global gridded soil datasets 501 

specify or LSMs represent. Catchment has some of its largest positive biases over 502 

this network where other models generally have some of their strongest negative 503 

biases.  504 

 505 

7. Spatial scales 506 

Finally, we examine the spatial decorrelation scales in the observational networks 507 

and models. This approach is highly analogous to the temporal scaling we defined as 508 

“memory” in Sec 6, and follows similar principles (Vinnikov et al. 1999; Entin et al., 509 

2000). In the case of decorrelation of soil moisture time series over space, we have 510 

three factors: decorrelation over meteorological scales of tens to hundreds of 511 

kilometers related to the spatial scales of the forcing of soil moisture variability, 512 

particularly precipitation; decorrelation over catchment hydrologic scales of meters 513 

to hundreds of meters brought about by variations in soil properties and sampling 514 

of different regimes along hillslopes; and random measurement errors as 515 

characterized in Sec 4. 516 
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As a check, we look first at the SOILSCAPE sites, whose nodes are close enough 517 

together to be well within the meteorological scales. We find essentially no 518 

relationship in any season between the correlation of time series of soil moisture 519 

from pairs of stations and their separation distances, which range from about 20-520 

500m. The implication is that evidence for the “catchment hydrologic scale” of 521 

Vinnikov et al. (1999) is swamped by the random error in measurements.  522 

For other networks with greater distance between stations, a systematic 523 

relationship between station separation and correlation emerges. Figure 7 shows 524 

correlation as a function of station separation during summer for several state 525 

networks, and larger networks that have numerous stations in a single state (“Delta” 526 

refers to all stations in a region centered on northern Mississippi, spanning 93°-527 

85.5°W, 32°-35.1°N; “UT” and “CO” refer to stations within Utah and Colorado). For 528 

all networks except the West Texas Mesonet there is a clear decrease in correlation 529 

with distance. The two networks using heat dissipation sensors, ARM and the OK-530 

Meso, have the two largest values of extrapolated correlation at distance 0.0, 531 

suggesting in a way similar to Fig 2 that these sensors have small random error. 532 

They also show higher correlations at larger distances than neighboring AWDN 533 

(Nebraska) or other dielectric sensor networks in the Midwest or eastern US. The 534 

western networks (SCAN UT, SNOTEL CO and SNOTEL UT) tend to show high 535 

correlations at large separations like ARM and OK Meso, likely indicative of the 536 

relatively rare precipitation in those areas during summer. The two networks 537 

overlapping in Utah (SCAN UT and SNOTEL UT) appear to show very different 538 

spatial correlation scales, but when they are adjusted for their different apparent 539 

random errors (discussed below), they become quite comparable. SCAN stations are 540 

located mainly in agricultural valleys and lowlands while SNOTEL stations are 541 
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predominantly in mountains at higher altitudes; it is unclear how this may affect 542 

error estimates.  543 

Figure 8 presents a color-coded table of model comparisons to network estimates of 544 

the spatial decorrelation distance (km) for surface soil moisture during JJA, defined 545 

as the separation between stations where zero-lag temporal correlation of time 546 

series of daily soil moisture drops to 1/e based on a best fit regression of ln(r) 547 

against distance. For the stations, the lines are shifted so that the intercept at 548 

distance 0 is at a correlation of 1, adjusting for the effect of random measurement 549 

error on correlations. This has the effect of increasing the spatial decorrelation 550 

distance. No such adjustment is necessary for model output, where distances are 551 

calculated for each grid box relative to the 8 surrounding grid boxes with distances 552 

calculated between the centers of each grid box. Both standard and harmonic means 553 

are given across models, and the standard deviation is relative to the standard 554 

mean. 555 

Many difficulties in estimating spatial decorrelation scales consistently across 556 

networks, and comparing models to them, are evident. The spatial decorrelation 557 

distances for each network follow from what was shown in Fig 7. Memories are 558 

longer in the west (typically several weeks as opposed to ~1 week in the central and 559 

eastern US), and they are long for the two networks with heat dissipation sensors 560 

(shaded orange). AWDN (Nebraska) and DEOS (Delaware) show much shorter 561 

decorrelation distances than other networks. The contrast between AWDN and both 562 

ARM and OK Meso is especially troubling, since they are all close to each other in the 563 

Great Plains. Here the different performance of various types of sensors is obvious. 564 

Compare to the SCAN-UT and SNOTEL-UT networks over Utah, which use similar 565 
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instruments and are within 6% of each other once adjusted for random 566 

measurement error. 567 

Looking at the models, there is a tendency for overestimation of the decorrelation 568 

distance. This may be related to the differences in scaling between the point 569 

observations and model grid boxes. Even though many pairs of stations are used to 570 

estimate the correlations as a function of separation shown in Fig 7, they still 571 

represent point-versus-point correlations, and not area-versus-area as is implied in 572 

model grid box values. Comparing sets of stations averaged over areas comparable 573 

to adjacent model grid boxes might provide a more proportionate estimate, but we 574 

immediately face the problem of a lack of station density over all but a few areas. We 575 

saw in Section 6 that the estimation of memory, which is a closely related 576 

calculation to decorrelation distance (Vinnikov et al. 1996), is not scale resilient like 577 

variance.  578 

The row of Fig 8 labeled “Corr (no WTX)” is the correlation between model and 579 

network estimates across the first 9 networks listed. The curve fit for WTX-Meso is 580 

so flat (see Fig 7) that a ridiculously long distance is projected for this network, so it 581 

is not included in the correlation. The probability shown is the likelihood the 582 

correlation could be arrived at by chance (with 7 degrees of freedom) – a one-tailed 583 

test is made as there is no inherent value in a negative correlation. The free-running 584 

CFS simulation would appear to perform well, with a correlation of 0.67 and only a 585 

5% chance of arriving at this correlation randomly. However, out of 12 models it is 586 

not surprising to see one with a probability below 8-10%, and the slope of the fit 587 

through the scatter is nearly 1:4, far from 1:1. The harmonic mean of all models 588 

produces a lower positive bias than a straight mean, but a negative correlation 589 

across the networks. 590 
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Among the models there is a great deal of variation. There is not a consistent 591 

behavior of offline LSMs relative to coupled models, or reanalyses relative to free-592 

running GCMs. However, the suite of models using the Catchment LSM tends to have 593 

shorter decorrelation distances than either the H-TESSEL or CLM sets of models. 594 

The Noah set spans a wide range, varying by a factor of two from offline GLDAS to 595 

the low-resolution 20CR simulation. 596 

  597 

8. Conclusions and Discussion 598 

In this study, we have confronted a number of LSMs in both coupled and uncoupled 599 

modes with in situ soil moisture measurements from a number of independent 600 

networks over the conterminous United States to (1) determine the feasibility and 601 

pitfalls of such a comparison and (2) see what can be learned about model and 602 

observational data. We first investigate characteristics of the observational data, 603 

with particular attention to how they differ between networks (possibly due to 604 

difference in instrumentation), in space, and over time. We then test approaches to 605 

compare model output to the observational data. 606 

We examine three statistical metrics: variability as measured by the standard 607 

deviation of daily soil moisture, memory represented by the time it takes lagged 608 

autocorrelation of daily soil moisture to drop to 1/e, and spatial scale calculated like 609 

memory as the distance over which unlagged correlations between soil moisture 610 

measurements or model estimates drop to 1/e. For measurement networks with 611 

many closely-located stations within the area of a typical model grid box, we find 612 

that aggregation of many stations (arguably more representative of grid box average 613 

values represented by LSMs) has little effect on the standard deviation, but does 614 

change estimates of memory in non-systematic ways. Data completeness can affect 615 
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aggregation, but not in a clearly predictable way. Although not directly investigated 616 

here, there is evidence that spatial scale estimates are also sensitive to the 617 

combination of stations. We conclude that modeled soil moisture variability can be 618 

safely validated against data from single stations, but other metrics cannot. 619 

Another caveat regarding in situ soil moisture data is that there can be clear 620 

differences between the statistical properties of data from different networks that 621 

are in the same or adjacent locations. This mirrors what is already established for 622 

soil moisture products between models (Koster et al. 2009). In some cases this 623 

seems to be caused by the type of sensor used. Buried probes seemed to exhibit less 624 

random error than near-field remote sensing techniques, although we do find 625 

networks with dielectric sensors that appear to have large random errors. Heat 626 

dissipation sensors have generally low random error, but also lower day-to-day 627 

variability and connote longer soil moisture memory than dielectric probes, even 628 

after random errors are accounted for. Random measurement errors generally 629 

decrease with depth for buried sensors. There are also differences in estimated 630 

random errors between networks with essentially the same instrumentation, 631 

suggesting differences in calibration and maintenance may also be a factor. 632 

Models show systematic biases in near-surface soil moisture metrics (Figs 5, 6, and 633 

8). The model configurations with the Catchment LSM all show too little variability 634 

and long memory, but in the case of free-running GEOS5 simulations an unusually 635 

short spatial scale in some cases. Bosilovich (2013) showed some precipitation 636 

comparisons for MERRA indicating too little interannual variability. CLM tends 637 

toward excessive variability and short memory. The characteristics of variability 638 

and memory are not always in opposition – ERA-Interim Land has positive biases in 639 

both while ERA-Interim has negative in both. These features can be attributed to the 640 
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modeled soil moisture range lacking spatial variability in ERA-Interim, as 641 

documented in the soil hydrology revision (Balsamo et al. 2009). An interesting 642 

dependency on spatial resolution can be deduced from the IFS integrations within 643 

the Athena project that used a 4-times higher spatial resolution, enhancing the 644 

match to in-situ standard deviations of daily surface volumetric soil moisture (Fig. 645 

5), memory (Fig. 6), and spatial de-correlation distance (Fig. 8).  646 

The various implementations of the Noah LSM range between low and high biases, 647 

but often have the lowest biases across all networks. For both variability and 648 

memory the models show higher spatial correlations across stations within regional 649 

to national networks than to state-level networks (Tables 5 and 6), suggesting they 650 

reflect large-scale hydroclimate patterns better than local ones. The specification of 651 

soil hydrologic properties in models is much coarser than natural heterogeneity of 652 

the soils in most regions, reflecting another aspect of subgrid variability in large-653 

scale models that is poorly represented and confounds validation. Free-running 654 

coupled land-atmosphere models perform worst at simulating large-scale patterns, 655 

possibly due to the poor simulation of precipitation spectra by GCMs.  656 

Spatial scales were found to be particularly difficult to diagnose. For the SoilSCAPE 657 

network where stations are separated by only O(100m) there appears to be no 658 

dependence of inter-station correlation on distance between stations. Theory 659 

suggests there is a “catchment hydrologic scale” in this range (Vinnikov et al. 1999) 660 

but measurements seem to be dominated by random errors that obscure evidence 661 

of it. Meteorological-scale decorrelation over ranges of O(10-1000km) are clear in 662 

observations and models, but we find the heat dissipation sensors seem to imply 663 

longer spatial scales, and different networks of dielectric sensors can give very wide 664 

ranges of estimates that appear unrealistic. CLM, Catchment and HTESSEL each 665 
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represent subgrid surface variations to differing extents, but this does not translate 666 

well to representation of observed subgrid variability (cf. Bosilovich 2002). To put 667 

comparisons between models and observations on the same footing for this metric, 668 

stations should first be aggregated into average time series over areas comparable 669 

to model grid boxes before estimating spatial decorrelation distances.  670 

Overall, statistical vagaries between different soil moisture networks using different 671 

types of sensors and measurement techniques suggest great caution is needed when 672 

using these data for validation, calibration or data assimilation. The typical 673 

assumption that model errors are large while observational errors are small may 674 

not apply readily for soil moisture. This is particularly important as the LSM 675 

community moves towards a more rigorous benchmarking approach (e.g. Best et al. 676 

2015) for fluxes and other variables such as soil moisture. The results here also 677 

suggest statistical considerations that should be applied when extending model 678 

evaluation or benchmarking to 2-D rather than at a single point. One must be very 679 

careful about scaling issues – everything possible should be done to put data from 680 

different sources on the same footing before comparison. Only temporal variability 681 

seemed to be insensitive to the differences in scale between point measurements 682 

and model grid box values.  683 

Note that this study is largely exploratory and we opt to go wide rather than deep; 684 

instead of giving a highly detailed examination of a particular soil moisture metric, 685 

observational network or model, we traverse data and metrics from multiple 686 

observational networks and models. Our aim is to explore the problems and pitfalls, 687 

as well as bring to light the areas of promise for validation of models with observed 688 

soil moisture data. The indicated biases potentially indicate deficiencies in the land 689 

models. However, they may also reflect the model-specific character of a given land 690 
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models’ soil moisture representation. Given the necessity of computing fluxes 691 

averaged over large and complex domains with limited spatial resolution in soil 692 

moisture description, soil moisture in land models is arguably better interpreted as 693 

a model-specific index of wetness than a variable that can be directly compared to 694 

observations (Dirmeyer 2004, Koster et al. 2009). For this reason, modeled soil 695 

moisture is known to have model-specific magnitudes (and yet still function well in 696 

climate models); by the same token, standard deviations of soil moisture will also 697 

necessarily be model-specific. This point underscores a major difficulty faced when 698 

confronting land models with such observations. 699 

The work presents several means to approach the assessment of model soil 700 

moisture behavior with in situ observations with particular focus on spatiotemporal 701 

inconsistencies. The problem is analogous to that faced in operational data 702 

assimilation, where observations from a wide range of sources with different 703 

spatiotemporal coverage and error characteristics must be harmonized to generate 704 

useful analyses. Key to such approaches is a large and robust set of calibration and 705 

validation data – none of the networks examined here are due to be discontinued 706 

and more networks are coming online and being synthesized into NASMD and ISMN 707 

every year, so the situation should only improve. Furthermore, satellites can 708 

provide spatially continuous measurements at scales comparable to model grid 709 

boxes. Current missions are beginning to provide such information, but better 710 

temporal coverage at higher spatial resolution, maintained uninterrupted over 711 

decades will provide, in combination with in situ measurements and synthesis 712 

through data assimilation, the best overall monitoring and initialization for 713 

forecasts.  Despite this, models can still be improved using the growing 714 
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observational record to identify and improve processes and parameterizations that 715 

contribute to errors in the surface water cycle. 716 
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Table 2. Details of ISMN networks used in this study. Local extent means the 936 
network spans parts of one (or for ARM, two) states; regional networks span many 937 
states, and often all of the conterminous US. Interval indicates typical interval – for 938 
some networks labeled “Hourly” some subset of instruments may report 3- or 6-939 
hourly. Years and days indicate the smallest span that incorporates all data. 940 
Instruments indicates the sum of the maximums of the number of each unique type 941 
or uniquely labeled type of sensor deployed at any site. SM levels indicates the total 942 
number of unique depths of sensor placement for the network; * indicates sensors 943 
that sit above ground and sense soil moisture remotely – the depth of the 944 
measurement is not static and varies with location, soil moisture and other 945 
conditions.  946 
Network Extent Interval Stations Years Days SM Levels Instruments 
ARM Local Hourly 29 22 7740 10 15 
AWDN Local Daily 50 13 4749 4 2 
COSMOS Regional Hourly 101 7 2308 1* 1 
PBO-H2O Regional Daily 108 8 2865 1* 3 
SCAN Regional Hourly 211 19 6877 24 52 
SNOTEL Regional Hourly 415 19 6425 16 45 
SOILSCAPE Regional Hourly 135 4 7256 29 6 
USCRN Regional Hourly 114 15 5029 5 5 
USDA-ARS Regional Hourly 4 8 2618 1 4 
 947 
 948 
Table 3. As in Table 2 for NASMD.  949 
Network Extent Interval Stations Years Days SM Levels Instruments 
AMERIFLUX Regional Daily 55 13 5844 37 1 
ARM Local Daily 17 16 5845 10 1 
AWDN Local Daily 41 5 1827 4 1 
CHILI Local Daily 25 3 1097 1 1 
COSMOS Regional Daily 54 5 1828 1* 1 
DEOS Local Daily 26 12 3289 1 1 
ECONET Local Daily 31 15 5479 1 1 
MAWN Local Daily 80 17 6209 2 1 
MAW-MO Local Daily 8 12 4018 1 1 
NOAAHMT Regional Daily 25 16 4384 3 1 
OK-MESO Local Daily 104 13 4749 4 1 
SCAN Regional Daily 123 17 6210 13 1 
SNOTEL Regional Daily 351 13 4750 16 1 
SDAWN Local Daily 11 7 2558 5 1 
USCRN Regional Daily 113 4 1462 27 1 
WTX-MESO Local Daily 53 11 4018 4 1 
 950 

951 
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Table 4. Specifications for the four land and atmosphere models, including source of 952 
data and spatial resolution. 953 

LSM Offline  Free-Running  Reanalysis 

Catchment 
3 layers 
spanning 
2.01m 

MERRA-Land 
(MERRA+GPCP 
forcing) 
0.67°x0.5° 
Reichle et al. (2011) 

GEOS5 simulation on 
MERRA2 mode 
0.67°x0.5° 
 

MERRA 
0.67°x0.5° 
Rienecker et al 
(2011) 

Noah2.7 
4 layers 
spanning 
2.00m 

GLDAS 
1°x1° 
Rodell et al. (2004) 

CFS seasonal forecasts 
0.94°x0.95° 
 

CFSR 
0.31°x0.37° 
Saha et al. (2010); 
20CRv2 
1.88°x1.91° 
Campo et al. (2011) 

HTESSEL 
4 layers 
spanning 
2.89m 

ERA-Interim Land 
0.75°x0.75° 
Balsamo et al. (2015) 

IFS in Athena Project 
0.14°x0.14° 
Kinter et al. (2013) 

ERA-Interim 
0.75°x0.75° 
Dee et al. (2011) 

CLM4.0 
12 layers 
spanning 
3.43m 

Qian et al. (2007) 
forcing 
1.25°x0.9° 
Lawrence et al. (2011) 

CCSM4 seasonal 
forecasts 
1.25°x0.9° 
Dirmeyer et al. (2013) 

--none-- 

 954 
955 



 41 

Table 5. Spatial pattern correlations of subseasonal JJA standard deviations of daily 956 
soil moisture between stations and model grid boxes for indicated models. 957 
Estimates are grouped by extent of network (local versus regional) and averaged 958 
across networks weighted by number of stations used in each network. Surface 959 
refers to the top LSM soil level, except CLM where it is the total for the top 3 layers; 960 
shallow is the second layer except for CLM where it is layers 4-6; deep is the third 961 
layer for Noah and HTESSEL, layers 7-8 for CLM. 962 
LSM Local Regional 
Noah GLDAS CFSR CFS 20CR GLDAS CFSR CFS 20CR 
Surface -0.13 0.06 -0.01 0.06 0.38 0.40 0.30 0.25 
Shallow 0.08 0.09 -0.06 0.06 0.39 0.34 0.33 0.30 
Deep 0.09 0.00 -0.09 0.00 0.25 0.21 0.22 0.18 

Catchment MERRA 
land MERRA GEOS5  MERRA 

land MERRA GEOS5  

Surface -0.13 -0.11 -0.09  0.08 -0.04 0.21  
Shallow 0.07  0.10  0.29  0.21  

HTESSEL ERA-In. 
land 

ERA 
Interim IFS  ERA-In. 

land 
ERA 

Interim IFS  

Surface 0.07 0.03 0.12  0.40 0.50 0.47  
Shallow 0.09 0.03   0.34 0.43   
Deep -0.02 0.01   0.28 0.32   
CLM CLM  CCSM  CLM  CCSM  
Surface 0.14  0.07  0.41  0.39  
Shallow 0.11  0.05  0.33  0.34  
Deep 0.07  -0.03  0.27  0.25  
Multi-
model Offline Reanal. Free  Offline Reanal. Free  

Surface -0.01 0.01 0.09  0.31 0.28 0.35  
Shallow 0.09 0.06 0.12  0.34 0.36 0.29  
Deep 0.03 0.00 0.04  0.27 0.24 0.22  
 963 

964 
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Table 6. As in Table 5 for soil moisture memory.  965 
LSM Local Regional 
Noah GLDAS CFSR CFS 20CR GLDAS CFSR CFS 20CR 
Surface 0.11 0.11 0.16 0.17 0.30 0.20 0.18 0.22 
Shallow -0.07 0.05 0.06 0.15 0.41 0.30 0.21 0.21 
Deep -0.03 -0.07 -0.04 -0.01 0.15 0.17 0.12 0.10 

Catchment MERRA 
land MERRA GEOS5  MERRA 

land MERRA GEOS5  

Surface 0.23 0.18 0.20  0.17 0.20 0.16  
Shallow 0.05  0.04  0.04  0.09  

HTESSEL ERA-In. 
land 

ERA 
Interim IFS  ERA-In. 

land 
ERA 

Interim IFS  

Surface -0.09 0.19 0.16  0.14 0.08 0.06  
Shallow 0.09 0.06   0.15 0.25   
Deep 0.02 -0.07   0.10 0.29   
CLM CLM  CCSM  CLM  CCSM  
Surface 0.08  -0.02  0.15  0.08  
Shallow -0.03  -0.09  0.25  0.08  
Deep -0.02  -0.01  0.15  0.02  
Multi-
model Offline Reanal. Free  Offline Reanal. Free  

Surface 0.08 0.16 0.16  0.19 0.17 0.12  
Shallow 0.01 0.09 0.11  0.21 0.25 0.13  
Deep -0.01 -0.05 0.05  0.09 0.19 0.07  
 966 

967 



 43 

Figure Captions: 968 

Figure 1. Station locations for the networks of (a) ISMN; and (b) NASMD. 969 

Figure 2: Estimated relative random observational error as a fraction of estimated 970 

real soil moisture variability as a function of depth (interpolated to Noah LSM 971 

layers) for each observational network in ISMN (top) and NASMD (bottom). “All” is a 972 

weighted average of all networks by the number of stations in each network. 973 

Figure 3: Aggregation statistics for observational networks (SS are sets of nodes 974 

from SOILSCAPE, 100 is a set of stations in Oklahoma, the others are in California; 975 

SCAN AL is a set of SCAN stations across northern Alabama) with closely located 976 

stations – values for each number of stations averaged together (abscissa) is the 977 

mean for all combinations with the indicated count; (a) number of days of data 978 

available when any station with missing data results in missing data for the 979 

combined average; (b) the estimated standard deviation in time of daily soil 980 

moisture (the mean for each month is first subtracted to remove interannual 981 

variability); (c) the coefficient of variation across combinations of the combination 982 

means. Black line is from a subset of SCAN AL with no missing data from any station 983 

for 306 consecutive days. 984 

Figure 4: As in Fig 3 for soil moisture memory (see text for definition). Solid lines 985 

are the median value of memory among all combinations, and dotted lines show the 986 

harmonic mean across all combinations. 987 

Figure 5: Average standard deviation of daily surface volumetric soil moisture 988 

(dimensionless) during JJA for stations in each network (first column after network 989 

names), and the average bias of standard deviation for each model across the station 990 

locations of each network. Averages and standard deviations of each network and 991 
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model are shown at the right and bottom of the grid respectively. Color shading is to 992 

aid recognition of negative (blue) and positive (red) biases. Two networks that 993 

employ heat-dissipation sensors are shaded orange; two networks that use near-994 

field remote sensing techniques are shaded green; all others use some form of 995 

dielectric probe.  996 

Figure 6: As in Fig 5 for surface soil moisture memory (units of days). 997 

Figure 7: Spatial autocorrelation of daily surface layer soil moisture during JJA as a 998 

function of separation between stations for several networks, binned in intervals of 999 

10km. Lines indicate linear best fits through the binned log of correlation (negative 1000 

values omitted).  1001 

Figure 8: Average spatial decorrelation distance (km) where zero-lag temporal 1002 

correlation of time series of daily soil moisture drops to 1/e for surface volumetric 1003 

soil moisture during JJA for stations in each network (first column after network 1004 

names), and models. Colors indicate percentage deviation of each model (averaged 1005 

over domain of network) relative to in situ network estimates with estimated 1006 

random measurement error removed. SD is standard deviation among models. 1007 



  

 
Figure 1. Station locations for the networks of (a) ISMN; and (b) NASMD. 



  

 
Figure 2: Estimated relative random observational error as a fraction of estimated 
real soil moisture variability as a function of depth (interpolated to Noah LSM 
layers) for each observational network in ISMN (top) and NASMD (bottom).  “All” is 
a weighted average of all networks by the number of stations in each network. 



  

 
Fig 3: Aggregation 
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observational networks 
(SS are sets of nodes 
from SOILSCAPE, 100 is 
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Oklahoma, the others are 
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Figure 4: As in Fig 3 for soil moisture memory (see text for definition).  Solid lines 
are the median value of memory among all combinations, and dotted lines show the 
harmonic mean across all combinations. 



  

 
Figure 5: Average standard deviation of daily surface volumetric soil moisture 
(dimensionless) during JJA for stations in each network (first column after network 
names), and the average bias of standard deviation for each model across the station 
locations of each network.  Averages and standard deviations of each network and 
model are shown at the right and bottom of the grid respectively.  Color shading is 
to aid recognition of negative (blue) and positive (red) biases.  Two networks that 
employ heat-dissipation sensors are shaded orange; two networks that use near-
field remote sensing techniques are shaded green; all others use some form of 
dielectric probe.  
 



  

 
 
Figure 6: As in Fig 5 for surface soil moisture memory (units of days). 



  

 
Figure 7: Spatial autocorrelation of daily surface layer soil moisture during JJA as a 
function of separation between stations for several networks, binned in intervals of 
10km. Lines indicate linear best fits through the binned log of correlation (negative 
values omitted).   



  

 
Figure 8: Average spatial decorrelation distance (km) where zero-lag temporal 
correlation of time series of daily soil moisture drops to 1/e for surface volumetric 
soil moisture during JJA for stations in each network (first column after network 
names), and models.  Colors indicate percentage deviation of each model (averaged 
over domain of network) relative to in situ network estimates with estimated 
random measurement error removed.  SD is standard deviation among models.  
 


